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Abstract 

We have developed a comprehensive Monte Car010 analysis in order to simulate the 
neutrino signal from a galactic supernova in a large water Cerenkov detector. This allows us 
to demonstrate that by exploiting the various features of the signal in a way which is largely 
independent of the sz~prnova model, assuming only that the late time behaviour of the signal 
is flavor independent. a sensitivity to a tau neutrino mass down to the cosmologically 
interesting range of X 25 eV for a medium luminosity burst is possible. This is the case 
even though the tau signal involves x 50 out of ~10,000 total events in a detector of 
the size of that proposed for ‘Super Kamiokande”. In addition, our results allow us to 
elucidate several aspects of a supernova neutrino signal in water detectors which had not 
been previously explored, including hew results on the observability of the neutronization 
burst. 

* In press, Nucl. Phys. B 
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Neutrino astronomy completed its neo-natal stage with the observation, on February 

23, 1987, of neutrinos from SN 1987a, in the Large Magellanic Cloud [l]. The 

observation of 11 neuuino events in the Kamiokande ll (KII) detector and 8 events in the 

IMB detector in conjunction with the optical signal from SN 1987a provided the first direct 

evidence of the central role of neutrino emission in stellar core collapses. Of course, 19 

events is not sufficient to allow detailed checking of collapse models, although it is pleasing 

that many features of the standard theory--in particular, the basic energetics arguments-- 

were at least consistent with the observed signal.[2,3,4]. In order to examine supernova 

physics in detail, both larger detectors, and closer supernovae will probably be required. 

Among the new generation of large underground water detectors being planned is the so- 

called “super-Kamiokande” detector, which will be 10 times larger than KII and have 

better detection sensitivity and electronics. For a galactic supernova, =7ooO Fe events 

might be expected. Also under construction is the SNO heavy water detector in Sudbmy, 

which, while it will be smaller than KII, may achieve sensitivity to neu@al current 

scattering on neutrons, allowing many more non-electron neutrino events to be detected 

than in light water detectors of the same size. In this work, we shall concentrate on 

modelling the signal in light water detectors, although we shaIl make some preliminary 

remarks about sensitivities in the latter type as well. 

Amidst these developments, there has been renewed interest in the possibility that the 

tau-neutrino may have a cosmologically interesting mass. A neutrino mass in the range of 

lo-100 eV is large enough so that the cosmic neuuino background could contribute a 

significant fraction of the mass needed to result in a flat universe today. Also, recent 

confutation by Kamiokande of the solar neutrino problem has fueled speculation that the 

solution may be related to the existence of a muon neutio mass in the range of 10s3 eV 

[5,6]. If this is the case, a see-saw mechanism for generating neunino masses from Grand 

Unified Theories [7] suggests a vT mass as large as O(10) eV, depending on the possible 

relation of the neunino mass matrix to the quark and lepton mass matrices. 

In spite of the obvious interest in exploring such a mass range, terrestrial experiments 

are quite limited The only proposed experiment which might probe such a range is a long 

baseline neutrino oscillation experiment at an upgraded Fermilab. This, of course, will 
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depend upon the existence of vacuum mixing between neutrino species. The only 

possibility for a direct kinematic measurement of a tau neutrino mass in the foreseeable 

future comes from the observation of tau-neutrinos from stellar collapse. In this case, the 

travel time from a supernova at ~10 kpc is such that neunino masses gteater than 110 eV 

will result in dispersive rime delays on the order of seconds. Unfortunately, however, tau- 

neutrinos do not make up the dominant supernova neunino signal. In a water detector of 

the size of Super-Kamiokande, for example, we will show that the v r signal will probably 

involve 150 events, out of ,104 total events. Preliminary arguments suggest therefore that 

distinguishing a cosmologically significant tau neuttino mass will be difficult at best [8,9]. 

Nevertheless, because of the importance and uniqueness of such a possible 

measurement, it is worthwhile examining in advance of a galactic supernova what 

experimenters might do to optimize their sensitivity. In order to examine in detail this 

issue, as well as the more general question of what might be learned from the neutrino 

signal from a galactic supernova, we have developed and tested over the past year and a 

half a comprehensive Monte Carlo program to simulate a supernova neutrino signal, 

including backgrounds, in underground water detectors. While most of our results will be 

quoted for a detector with the specifications of Super-Kamiokande, the program is general 

enough to model any detector. We propose here using several new ideas for isolating and 

analyzing the tau (and muon) neutrino signals in a way which is independent of the details 

of supernova models, and relies only on relatively ubiquitous assumptions about the late- 

tune thermal signal. Using our Monte Carlo, we have been able to investigate where these 

ideas are viable, and if so, what kind of mass limits might be achieved We report here 

upon our resuhs. A more detailed description of the program will be published elsewhen+. 

1) The Neutrino Signal: 

Neutrino events which are detected in a water detector consist of a measured time, 

energy and angle for each observed positron or electron. In order to reproduce this signal 

our Monte Carlo program consists of three stages: in the first a net&no flux is generated at 

CA user’s manual for the Monte-Carlo and analysis programs is currently being prepared and will appear as a 

preprinr ‘Ilk. and copies of the program will be available upon request from LMK. 
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the supernova and propagated to the detector in the second this flux is convolved with 

interaction cross sections to determine the scattered events in the detector, involving 

physical energies and directions; in the third stage the scattered events are combined with 

information about the detector (and neutrino masses), including the background event rate 

and spectrum, to generate detected events which are given in terms of their detected time, 

energy and dim&on. Each of the latter two stages is generated from the preceding stage by 

use of a probability distribution. We briefly describe the physics input in each stage: 

(a) Neunino fluxes from Supernovae: The main features of the neutrino flux predicted 

to arise from stellar collapse have been widely reviewed [IO,1 I]. We describe here those 

features which we have incovrated into our generation algorithm, The total luminosity in 

neutrinos in the entire burst is set to vary between 1.5-4 x 1O53 ergs, which we divide into 

thermal and non-thermal components. The non-thermal component describes the 

‘~neutronization” burst, the initial electron neutrino pulse from the capture of electrons by 

protons as the shock first hits the neutrinosphere. The time dependence and spectrum of 

this initial pulse are model dependent, but it generally involves a width <IO-* sec. and peak 

height -5 x 1O53 erg&c. In the analysis quoted hem, the spectrum reported in [lo] was fit 

by a ninth order polynomial, and the luminosity was fit to a gaussian. 

After the initial burst, the supernova may enter a phase where matter is accreting onto 

the surface of the core, and neutrinos are emitted with a thermal distribution. This results in 

a roughly constant luminosity which we allowed to last between 0.1 and 1 second, with a 

turn-on width (which we chose as sigrnoidal) of -I/20 sec. While them is much debate in 

the supernova commur&y over the explosion mechanism itself [i.e. see 12,131, and the role 

of accretion, by varying the accretion tune between -0 and =l sec. we can accommodate 

the different possibilities. After this period, no more material is added and so the 

luminosity falls as the core cools with an exponential decay with a decay constant r of O(1) 

second. Each neuuino species has a roughly equal share of the luminosity, although the 

temperature of their thermal distributions vary. The relative temperamre of each species is 

determined by its interaction length in the supernova core, so that vu and vr have higher 

temperatures than v,. The characteristic temperature scale of the latter is 3-4 MeV and of 

the former is 7-8 MeV. During the period that the luminosity is constant, the temperature is 
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set to be constant for all species except for c, which increases as neutronization becomes 

complete. After this there are no longer protons for the re to interact with, so that their 

interaction length, and hence their temperature, becomes equal to that of vu and vr. We 

modelled the increase in the Fe temperature from its initial value To by a sigmoidal 

function with width of 0.33 sec. We assume that the vu and vr initial temperatures =ZTo, 

and the v, initial temperature =0.9 To. After the accretion phase the temperatures of all 

species are assumed to decay exponentially, with a rate proportional to the fourth root of 

the luminosity decay rate, so that z+rL. The luminosity and temperature functions of the 

various species are shown in figure 1 for one sample model. 

The neunino luminosity at the supernova is converted to a flux at the detector using the 

distance from the earth to the supernova. This distance is variable in the program but we 

take it to be 10 kiloparsecs in the results quoted here. The end product of the fist pro- 

gramming stage is thus a set of four fluxes, which give the number /second MeVcm* for 

each of v,, ie, vx, ix, where x here stands for either u or r - (Since vu and vr interact 

identically (to lowest order) in the supernova, their fluxes are essentially identical.) These 

fluxes are determined by 4 parameters: the length of the accretion phase, thud. which we 

varied between 0.1-I set; the decay constant for the cooling phase r, which we varied 

between 0.5-1.5 set; the total energy emitted in neutrinos E,-,, which we varied between 

1.5-4 x 1O53 ergs; and the intial Fe temperarum To, which we varied between 3-4 MeV. In 

all, we considered 36 different combinations of these parameters, shown in table 1. 

(b)Scattering in the detector: The neunino interactions in water which we incorporated 

in order to determine scattering events are: a) neutrino scattering off of electrons: v,-e-, ?e- 

e- and vx-e-, 7,-e- (where x again stands for p or z); b) electron anti-neutrino scattering off 

of protons: ce + p + e+ + n; and c) electron anti-neunino scattering off of oxygen: ve + 

160 --f e+ + 1eN. For all of the interactions considered, the total and differential cross 

sections, a(E,) and do/dy, were stored as arrays at discrete values of neutrino energy Ev. 

For cc-p scattering, y is defined to be COSB,, where Be is the scattered positron’s direction. 

For all other interactions, y is defined to be ~-me)/&, where &is the scattered electron’s 

energy and me is the electron rest mass. Because measurements of both the angle and 
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energy of the outgoing positrons or electrons will be of vital importance in what follows, 

we utilized forms for differential cross sections which are more detailed than normally 

quoted. The general form of do/dy (y =&.-me)&) for (anti)neuttinoelectron scattering is, 

$ = @+$+BoWY)~+C$~Y] 

where the parameters Ao, Bo, and Co are given in Table 2, and C+ is Fermi’s constant. 

The limits 0 c y < 1, are correct only for ultra-relativistic electrons. For this analysis, 

however, we incorporated more exact limits, 0 < y < 
( 2&l 
1 + x -‘. The scattering angle can 

then be calculated directly from 4-momentum conservation, yielding 

case = 
&-z- 

y (1+&l (1) 

where 8, = m&v is always a small number for detectable supernova neutrino interactions, 

since Ev is generally greater than 10 MeV. 

For the reaction, ie+p-+e++n, the simplest assumption is that the neutron experiences 

no recoil. In this limit, the cross section is o = 0, = yCv* + 3C,4*)peEe, where pe and 

Ee are the electron momentum and energy, and Cv = 1.0, CA = 1.25. The electron energy 

is calculated simply from conservation of energy: Ee = Ev - A, where A is the proton- 

neutron mass difference, A = m, -mp. The electron in this approximation is scattered 

isotropically. However, as our analysis depends sensitively on angular considerations, we 

chose. to include recoil effects. Following [14], we write o=cr,(l+&,a) where 

srecoil = l 
C”2 + 3c** 

(CA’- c&+(cA-c+(‘;)+Fe] 

where 6 = A/mn, and we use the notation x = A. 
np 

We parametrize the differennal cross section by the scattering angle, co& which 

varies between -1 and 1 with a nearly flat distribution, and determine the recoil energy from 

kinematics. Ee, Ev, and cost3 are related by 

&= 
Evmg - Amp - y* 

mn + Ev(l-cost!)) 
where y* = (A* - m&2. 

Again following [14] we find 

& = dEv@c[ ;;f’$-$j f~~v~,) 
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where 

f(&,&) = (cv+cA 

and g(Ev) is fixed by the normalization of a&,). 

Finally, for completeness, we included the interaction of ve with oxygen, ve+t%+ 

e++16N. We assumed that the cross section is only non-zero above some threshold energy, 

E-h, and has the form [ 111: 

cjEv) = 5.1043cm2(~~ 

where, for this reaction, &hresh = 13 MeV. The energy of the scattered positron is given 

simply by the energy difference I& = Ev - Et&& + me. The recoil of the oxygen atom is 

negligible, so the positron is released roughly isotropically. 

We used these differential cross sections to calculate scattered events as follows: Our 

program has discrete time steps: 150 steps for 0 < t < 0.1 seconds and 900 steps between 

0.1 < t c 50 seconds. (The smaller step size in the early time region is to study the initial 

electron neutrino burst .) For each time value, the neutrino energy is stepped through from 

0 to 100 MeV in 300 steps (the highest precision possible due to memory constraints). At 

every energy and time value, each neutrino type is considered in turn, and for each neunino 

all relevant interactions are calculated sequentially. For generating events we then started 

with time, neutrino energy, neutrino type and interaction type. The specific neutrino fluxes 

discussed above were used to generate a spectral flux of neutrinos (#/MeV/sec/cm2) for 

each specific time and energy. These values were used to generate r, the expected number 

of events for this time and energy bin, neutaino type and interaction type, where r = flux . 

cross section . # scattering centers . dt . dE. The number of scattering centers depends on 

the interaction involved, and was set equal to f. ld3, where 1.07.1033 is the number of 

molecules in 32000 menic tons of water (the fiducial volume of the Super-Kamiokande 

detector) and f is the number of scattering centers per water molecule: f = 10 for scattering 

off electrons; f = 2 for scattering off protons; and f = 1 for scattering off oxygen. 

The expected number of events, r, was used to randomly generate an actual number of 

scatterings, n, for each bin, using Poisson statistics. Having determined the number of 
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events, n, in each bin, which are the result of a specific neutrino type and interaction, we 

then used the differential scattering cross sections to randomly generate an energy and 

direction for each scattered electron or positron, as follows: For a fixed incident neutrino 

energy, the differential cross section da/dy is directly proportional to the probability 

distribution in y, dP/dy. We randomly generated values of y by integrating each 

differential cross section, equating the integral to an integral over a flat distribution, and 

then inverting the equation. The distributions were integrated and inverted numerically, and 

then stored in files to be used each time a new supernova burst was generated. We stored 

the inverted distributions in the form of equal probability intervals, which allowed rapid 

calculation of the randomly generated value, y. This process was repeated for each time- 

energy bin. The end result was a set of scatterings identified by: release time; incident 

neutrino energy; scattered electron (positron) energy and direction; and neunino type. 

(c) Detected Events: Determining detected values involves two different issues. First, 

the detector has certain energy and angular resolutions, as well as a trigger level and a 

threshold, and also a background event rate. Thus, not all scatterings are detected, some 

detections are background related, and the detected energy and direction are not identically 

equal to the incident physical values. Second, the timing of detections is altered if the 

neutrinos have masses. 

Our detector is patterned after the proposed Super-Kamiokande detector, a very large 

water Cerenkov detector 41 meters high and 38 meters wide, with a total mass of 50,000 

metric tons and a fiducial volume of 32ooO tons of water. (A more complete description of 

Super-Kamiokande can be found in Ref. [15].) The detector is sensitive to neutrinos from - 

many possible sources. We consider Cerenkov light both from positrons (<e+p+e++n) 

and recoil electrons (v+e+v+e). The detector has an energy threshold, Eu,, below which 

no electrons are detected. Above this value the trigger gives the probability of detection as a 

function of energy. The sigmoidal trigger function we used varied smoothly from P(Eu,) 

=o to P= P,,, with a width given by Et,. We determined these parameters by fitting to the 

trigger given in Ref. [ 161. The parameter values which tit this form best am.: Pm= = 1 .O; 

Eu, = 4.5; Ei-, = 0.5. We used this trigger function as a probability distribution to randomly 

determine whether a scattering above threshold was detected 
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Once a scattering is detected it is necessary to generate values for the energy and 

direction recorded by the detector. The detected energy values were generated randomly 

assuming a gaussian probability distribution with width CYE about the physical energy Ee, 

where~isafunctionofE,takenfrom[16]tobe:~ = 

The situation is a little more complex for generating ttte detected direction of scattering, 

given in terms of the initial supernova direction. We assume a gaussian angular resolution 

functione = l 
l.ic2 

- exp 
fE0~ 1 1 *, for the probability of detection witbin a solid angle 

2a,2 
dn of the physical scattered direction, with width 08. Here dn = sin(a)dado, where a and 

cp are angular coordinates with respecr to rhe scazrered dire&m, amI .LT@ is a function of Ee 

(by assumption oe is small enough so that the probability of detecting a > R is negligible). 

One can easily use this resolution function to generate a (the azimuthal angle cp is not 

relevant). The challenge is to express the detected direction not in terms of unmeasured 

angle a, but in terms of the measured angle, ad. from the supernova A tedious but 

straightforward calculation, gives: coded) = ~04%) cos(a) - sin(9e) sin(a) cos(o), where. a 

and e are as above, and Be is the phys&l scattered angle from the supernova One thus tirst 

randomly generates a, and uses this expression to determine ed 

Tbe absolute angular uncertainty, ua. is governed in part by finite detector resolution, 

but is mostly due to multiple electron scatterings in water. Consequently, the angular 

resolution cannot be much improved from the KU detector. Experimenters parametrize the 

angular uncertainty by a root mean squared angle. If ug is small enough, it can be related to 

the rcot mean squared angle: ( 02)1’ = flog. The dependence of ($)‘I2 &I energy for the 

KII detector is given in [16], and we fit this. to a ninth order polynomial, shown in figure 2. 

Next, the detector has background events which are unrelated to the supernova. The 

spectrum and rate are given by on line studies of the detector, and clearly there is not yet 

information on the background rate in future detectors. As an estimate of the possible 

background, we took the background for the KII detector, fitted its energy spectrum and 

scaled up the rate by a factor of 25%, with the result shown in figure 3. While we expect 

the Super-Kamiokande background to be larger than the KtI background (simply because 

the mass is larger) the improved electronics and improved photosensitive coverage will also 
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cut it down. In any case, we used this spectrum to randomly generate background event 

times and energies, which were also assumed to be isotropic. Our results are sensitive to 

the background and a more precise value is needed to make absolute statements. However, 

the results presented here will not be altered substantially unless the actual background is 

more than about ten times bigger than what we have assumed. 

Finally, the time stored with the detection is the time that the neunino is released from 

the supernova. There is a constant time-of-flight delay factor for all neutrinos, which is 

neglected. Since one goal of this analysis is to determine what kind of neunino mass limits 

might be obtained from water detectors, we allow an addirionul time-of-flight delay if 

neutrinos have a mass which goes like At2 = i 5 d, 
Ev2 

assuming mv << E,. This delay is 

added for each massive neutrino event. The advantage of this procedure is that we can 

generate a set of events from a supernova explosion, and then afterwards operate on this set 

to explore the effect of any mass we wish, without having to rerun our Monte Carlo. 

Thus we obtain, for each supernova explosion, a set of detected events, with each 

consisting of a time, energy and direction. These come from all the interactions of all 

species of neutrinos, and also include background events. Sample signals for several 

different explosions, showing the time signal, and energy spectrum are given in figure 4. 

2) Analysis Strategy: 

Using our Monte Carlo we can examine in great detail many features of the neutrino 

signal predicted to arise from a galactic supernova. Here, however, we are most concerned 

with features which can probe the time delays due to a non-zero tau neunino mass. We 

considered, for reasons soon to be discussed, a range of vr masses, from mv = Oto m, = 

1KeV. To get some idea of the possible signatures, we present, in figure 5, delays for 

representative masses within this range as a function of energy. Since the characteristic 

energy for vr is 18-24 MeV, if the mass of vT is greater than around 500 eV these neutrinos 

will be delayed beyond the limit of our consideration. The only way to probe masses 

beyond this is if the absence of these r neutrino events can be measured. For masses 

between 50 eV and 400 eV, the effect of the mass will be to push events from the first 
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second or so of the signal to 5-50 seconds. The challenge is to see if this effect can be 

statistically distinguished, if only a few such events are observed, 

On fist thought, such a possibility may seem remote, especially for masses in the IO- 

50 eV range. The largest signal in the detector by far will be. from ve + p + n + e+, 

although all neutrino species will contribute from v + e + v + e. Approximately 5000- 

15000 ie events are expected, versus 30-100 vr events. Moreover, part of the purpose of 

the supernova observation will be to pin down the parameters of the supernova explosion. 

Without pre-ordained knowledge of these parameters, how can we hope to distinguish 

neutrino mass effects when fitting model predictions to the explosion? To graphically 

demonstrate this difficulty, we show in figure 6 a histogram for all detected events for one 

model explosion, with the vr mass set to 0 in one case and to 400 eV in the other. The two 

results appear identical! 

Nevertheless, we believe one can surmount these difficulties, and extract the vr signal 

by exploiting two kinematic characteristics of the neutrino signals, one of which goes 

against previous intuition: 

(1) First, an angular cut on the data removes most of the ve signal. As demonstrated in 

equation (I), neun-ino-electron scattering at MeV energies is peaked strongly in the forward 

direction. For example if a scattered electron is produced with only 10 MeV from a 

neuhino with incident energy E= 20 MeV the scattering angle will be cos e-0.95. By 

contrast, the positrons produced by ie’s are nearly isotropic, with in fact some mild 

peaking in the rearward direction. Thus, we should search in the forward cone for the tau 
- 

neutrino signal. In principle, while one can gain in “signal to noise” by reducing the size of 

this forward cone (until one runs out of events), in practice the smallest reasonable choice 

in opening angle corresponds to the angular resolution of die detector itself. For incident 

vr’s with mean energy 525 MeV, the mean scattered electron energy is =12 MeV. The 

angular resolution o for electrons of this energy is [16] ~180. Thus, we define the forward 

cone as corresponding to cos9~os(18~=0.95. To get an idea of how much more clearly 

the signal for a tau neutrino mass appears in this forward cone, we display, in figure 7, 

histograms of events in this cone for one model explosion, as the vr mass is increased from 

0 to 400 eV. The migration of events to later tunes is clearly visible. 
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(2) Convention wisdom suggests that the vr and v,, events will have higher mean 

energy than 7, events because the former are emitted from tbe supernova with higher mean 

temperature. However, exactly the opposite is m&z. Because the y-disnibution in neuttino 

elecaon scattering is flat, the average energy of the scattered elecnons will be half that of 

the incident neutrinos, whereas in ve. - p scattering the outgoing positron takes up almost all 

the energy of the neutrino. In addition the ie - p cross section goes as E2, while the v - e 

cross section goes as E. ‘Ibis serves to further enhance the high energy tail of the positron 

spectrum. As a result of these two factors, the ve signal occurs at systematically higher 

energies, and we can hope to furtber suppress the &background by making an energy cut. 

Indeed, without this cut, we shall see that it is impossible to demonstrate statistically the 

existence or absence of the entire vT signal. 

While the ability to isolate the overwhelming ie signal is very important for extracting 

the tau neunino signal, it more importantly provides the essential ingredient which allows a 

supernova model-independent limit on the tau neutrino mass. By breaking up the signal in 

to “forward” and “rearward” signals (i.e. c0s@30.95), we can analyze the internal 

consisfency of the signal itself. In particular, we may use the 5000- 1.5000 events in the 

rearward cone to provide a fit to the parameters of any sufficiently complex model at the 

1% level. We may then compare this fit with a fit to the data in the forward cone. For 

several key parameters, in particular those governing the late time behavior, which we 

asstunc is~‘Iuvor independent (based on thermal emission), the fits should be identical in 

the absence of a neutrino mass. The extent to which they disagree then allows us to probe 

for such a mass. We cannot stress too strongly that the beauty of this procedure is that it is 

largely independent of what the actual supernova model is. As long as the model which fits 

the rearward data is sufficiently complex (incorporating the basic supernova physics) to 

provide a sufficiently good fit to the rearward data, it should provide a good fit to at least 

the late time behavior of the forward data in the absence of neutrino masses. One must, of 

course, take into account that the smaller forward data set limits the statistical accuracy of 

any fit. Nevertheless, since all late time events will essentially fall in this forward cone, 

containing far fewer events than the total, even 5-6 such events can be statistically quite 

significant. In any actual experiment, we expect that experimenters would fit several 
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different models tn the tearwand data in order to extract the best fit. What we show here is 

that even a single simple fitting algorithm allows one to determine statistically a non-zero 

tau neunino mass. We can also demonstrate which techniques are likely, or not likely to be 

fruitful in this regard. The only assumption in this whole procedure is that the late time 

supernova signal is independent of neutrino type. Since this late time behavior is based on 

thermal cooling, such an assumption seems to be one of the safest one can make. 

3) Analysis and Results: 

Using the strategy outlined above, we fit the detector events generated by our Monte 

Carlo program for the 36 supernova models to a simple 5 parameter model using a 

maximum likelihood technique. The supernova model we used to tit the data was simpler 

than the model used to generate the events. The luminosity function consisted of a constant 

term b. for a time hid, followed by an exponential decay with time constant r. The main 

difference between this and the model which generates the data is the lack of a “turn-on” 

term. Each species is assumed to share the total luminosity E&. The temperature functions 

we assume for the model are the same as for the generating model, with a single parameter 

TO, except for ve, which is assume to have a simple linear increase, achieving the same 

temperature as the muon and tau neuninos after time, t2 (compared to the sigmoidal 

increase in the generating model). 

The luminosity and temperature functions were used to generated a spectral flux 

function for each neutrino: d2F/dEdt, which was then convolved with a differential cross 

section to yield the rate for producing scattered electrons (positrons) of energy Ee, i.e. 

d2N/dEedt. This was then multiplied by the probability for detecting an electron (positron) 

with energy E,, obtained by multiplying the threshold and sensitivity functions. Finally, 

we integrated this function over a gaussian resolution function for the energy E,, to obtain 

the detection rate function dzN/dEddt. This is the expected detection rate for a single 

neutrino type and interaction. We repeated this process for all neutrinos and their 

interactions, and added the results, along with a similar expression for the observed 

background rate, to get the total expected detection rate. 

While in principle this procedure is straightforward, in practice the determination of 
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dzN/dE&t in each bin involves a triple integral which cannot be evaluated analytically, and 

would be prohibitive to perform numerically. Instead, the integrals were evaluated at 

discrete values of Ed, for representative values of the temperature for unit luminosity. The 

actual values of d2N/dEddt were then found by interpolation between temperature values, 

and scaling by the appropriate luminosity. 

In order to incorporate the angular information which is essential for extracting the tau 

neutrino signal, we divided the data into a forward cone, and a rearward cone, as defmed 

earlier, and computed a separate likelihood function based on d2N/dEddt for each cone. 

Since the detected angle is itself a function of the actual scattered angle, fixing the event rate 

in the forward cone is somewhat subtle, but can be achieved using the relation given earlier 

between actual and detected scattering angles. 

The likelihood function in each region is given by 

L = ‘g q&)- Nmodet 

where the index i runs over all bins containing an event, and N,det is the expected total 

number of events from the fitting model. The bin size is set so that there is at most one 

detected event in any bin. The best fit parameter set is then determined by maximizing L. 

We remind the reader that the point of this analysis is to look for a signal in the forward 

direction that is identifiably different from what is implied based upon an analysis of the 

rearward data. Before performing detailed statistical tests, we begin by merely examining 

the fits to the rearward and the forward data for a sample explosion. Shown if figure 8(a) is 

tbe prediction of the best fit to the rearward data superimposed upon the actual data for a 

model explosion, with zero tau neutrino mass. As can be seen, the fit is good, except 

perhaps for early time differences, due to the simple linear increase in the fitting model 

compared to the sigmoidal increase in the generating model. Even so, the fit is quite good. 

Figure 8(b) shows the fit to the forward cone for the same explosion, and also the 

prediction based on the fit to the rearward cone. As can be seen, both predictions are in 

good agreement, and the both agree with the data. In Fig 8(c) and (d) the same procedure 

is applied, but now the tau neuhino is given a mass of 100 eV. The histogram in 8(c) 

appears on this scale to be virtually identical to the histogram for zero neuhino mass in 
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8(a). However, in 8(d), in which the forward data is displayed, it can be. seen that the 

rearward fit matches neither the forward data, nor the fit to the forward data. The rearward 

events cannot account for the anomalous late-time events in the forward cone, which are 

now clearly observable. It merely remains to quantify this, in order to determine what hind 

of neutrino masses can be distinguished. We now discuss three techniques we have so far 

employed to investigate this issue. 

(a) Likelihood matching: This technique is a simple extension of the comparison of 

forward and rearward fits describe above, which allows a quantitative analytic comparison 

of fits. One way to go about such a procedure would be to define confidence limits about 

the two best fit points in parameter space, and then compare the overlap. The ideal way to 

do this would be to determine the 5-parameter surfaces of constant likelihood for the two 

tits, and then compare them directly for overlap, and integrate the product of likelihoods 

over parameter space to get a conditional probability. Unfortunately, to determine 5. 

dimensional contours with any precision would require at least G?O5 points to be evaluated 

in likelihood space. This would take years of continuous processing on a Vaxl I-780 to 

analyze a single run of a single model. 

Nevertheless, we can do almost as well by a much simpler procedure, as a result of the 

structure of the two likelihood functions. Because the rearward tit is based on 50-100 

times more events than the forward fit, it is much more sensitive to changes in parameters. 

As a result, the overlap of confidence intervals should resemble fig 9(b) more than 9(a). 

Thus, a good approximation to the conditional probability can be obtained by finding the 

likelihood of the best rearward fit, assuming the forward fit. Specifically, we use the best 

fit parameters calculated for the rearward tit in the likelihood function for the forward data, 

and subtract from this value the value obtained using the best fit parameters for the forward 

tit in the same likelihood function. This gives, by straightforward statistical rules, the 

likelihood of the rearward fit, assuming the forward fit is correct. We then repeated this 

procedure for a number of different neutrino masses. In figure 10, we show our results, 

for 3 different supernova bursts-one with high luminosity, another with low, and a third 

with different time structure, using the definition of the forward cone and rearward cones 

given earlier, and including all the forward events, with no energy cut. These results are 
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mixed. For masses =40-400 eVd we can find strong disagreement between the forward 

and backward results for some mass values, but instead of the monotonic rise, and then fall 

we would expect, there are valleys where the disagreement is much smaller. Tbis is due to 

two effects. First of all, if there are late time tau neutrino events which occur in the 

rearward cone, the rearward fit can be shifted in the direction of the forward fit. Second, if 

there are enough late-time events in the forward direction, all tits will be bad. This will 

flatten the likelihood region, allowing a broader range of “acceptable” values. We can 

reduce the first effect, by reducing the size of the “rearward” cone, so that it is not 

contaminated by forward tau neutrino events. The removal of the forward tau neuttino 

“contamination” more than outweighs the effect of reducing the statistics in the rearward 

cone. In figure 11, we show the plots obtained by reducing the rearward cone to cose<.SO 

for two model explosions. The sharp valleys disappear. 

The second effect, that of all zero mass models providing a poor fit to the forward 

direction can be reduced by using not a best fit but a goodness of fit technique. By binning 

the events differently, so that there are many events per bin, a chi-squared analysis could be 

used to examine whether any non-zero massmodel provides an acceptable fit. Better still, 

we can add a mass parameter to the fitting function, and either perform a best fit for this 

parameter, or compare the improvement of fits with this extra parameter using an F-test, 

which quantifies the affect of adding another variable. All of these improvements are 

currently under investigation. Nevertheless, as figure 10 demonstrates, depending upon 

the supernova luminosity (and distance), this technique can already yield a sensitivity for 

masses in the range -40-400 eV. 

(b) Late time events: Our second technique is to look directly for late time events. The 

best fit to the rearward data is used to generate a predicted number of events in the forward 

direction. We then use Poisson statistics to compare the expected number with the actual 

number after some time teut and before 50 seconds. This approach is very model- 

independent, because it depends only upon the large statistics model fit to the late time 

behavior of the rearward signal. Also, while it is not independent of the other test, it is 

d For masses larger than O(lCQ ev. standard cosmological arguments suggest a heavy neuaino should be 

unstable. The sensitivity to larger masses quoted here is based on the assumption that the decay time is 

long compared to the travel time. We shall discuss the alternative possibility late? in this article 
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somewhat complementary---in mat the presence of many late time events in the forward 

direction improves the sensitivity of this test, when it can teduce that in the former. 

We display the results for several representative models in figure 12. In each case we 

reprocessed the same data set for each model while increasing the tau neunino mass, and 

used four values of teat, 4.5.9.5J4.5, and 19.5 seconds. The expected number shown is 

the integrated rate between 4.5-50 seconds for zero mass for the best fit parameters (thus, 

for later times, this over-estimates the event rate). The values P(n) are the Poisson 

probabilities for find n or rrwre events, given the expected background number. 

Our results are encouraging, although they are more luminosity dependent. As can be 

seen, for a medium luminosity burst (model 17) (at 10 kpc) with short accretion time (0.1 

set), a non-zero mass is indicated at the 99% confidence level for masses between 50-350 

eV, and even for masses down to ~25 eV and up to 425 eV, the signal is noticeable at the 

90% confidence. If the luminosity of the burst is reduced to the lowest expected, however 

(model 4). sensitivity at the 99% confidence level is restricted to the range 75-150 eV. 

Similarly, if the constant luminosity phase is longer (1.0 set--model 23), the accessible 

range is somewhat reduced, to =60-325 eV. 

We note that these results, demonstrating a possible sensitivity to a mass range ~30- 

400 eV, have been obtained without any energy ~cuts, and without any correlation of 

energy of cvenrs with rime, nor do they take into accounr the spectral differences between 

the background events and supernova events. Also, as we indicated earlier, this analysis is 

not independent of the maximum likelihood fitting analysis performed earlier. When these 

statistical analyses are combined, we expect the robusmess and range of the lower and 

upper limits will increase. In particular, we expect that putting a mass parameter in the 

maximum likelihood tits should improve sensitivity to the energy dependence of the late 

time events. We also need not restrict the interval to 4.5-50 seconds, which is the period 

dominated by the background events. As we include more modelling of the rearward signal 

in the late time analysis we can make the lower cutoff earlier. thus improving sensitivity to 

still smaller masses. Hence, given the sensitivity down to a mass ~30-50 eV of our 

preliminary tests, a statistically significant sensitivity down to masses at as small as =25 eV 

should be possible, depending upon the supernova luminosity and timing, as measured in 
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the rearward signal. We ma& prehminary steps to examine this, by incorporating the same 

energy and rearward cuts here as were used earlier, and lowering the cutoff time. We can 

see in figure 13 a sensitivity to masses as low as 25 eV. Incorporating a time interval past 

50 seconds could in principle increase the upper end of the sensitive range, although 

beyond =400-500 eV the events are so spread out as to approach the background event 

rate. It is possible however that using the spectral difference between supernova and 

background events might allow some distinction between signal and noise to be made. 

Finally, note that because the time delay is proportional to mass squared, even if the actual 

cooling decay constant were twice as large as the largest investigated here, the lower 

bounds on mass sensitivity would only be expected to increase by a factor of =1.4. 

(c) Missing Events: For masses in excess of J 1 keV, what may be most noticeable 

about the tau neunino signal is the lack of one! If events am delayed beyond the detectable 

limit, we should look for a deficit of events in the forward direction. Sensitivity to such 

heavy masses has become more urgent with the rebirth of indications of a 17 keV neutrino 

state mixed with the electron neutrino [17]. Of course, such a neunino will produce events 

which are delayed by more than 50 seconds only if it does not decay to lighter states on its 

way from the supernova. For lifetimes which arc short compared to the travel time, the 

observed signal could be determined by multiplying each event with zero mass by a time 

&lay determined by the actual distance tmvelled before neutrino decay. This distance could 

in turn be determined by a Monte Carlo which utilizes the time dilated lifetime based on the 

neunino energy. The effect of such decays would be to move more events into our 50 

second window, increasing sensitivity to such a mass. We have not explicitly considered 

this possibility hem, however, since it depends sensitively on neutrino lifetime. Instead, 

we concentrate here on the more difficult task of searching for a signal delayed beyond the 

event window we have chosen. 

A fact which is not often emphasized about even the purely forward events, is that they 

are dominated by electron neunino events, by a factor of almost 10 to 1. This is due to the 

enhancement of these interactions by the inclusion of charged, as well as neutral current 

scattering. Thus, to be sensitive to the absence of a tau neutrino signal, we must have 

statistically accuracy in the range of lO%-implying the need for >o(lOO) forward scattering 
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events. Moreover, as we briefly discussed earlier, even the forward scattering signal is, 

due to the angular resolution of the detector, dominated by ie events. Hence, without use 

of the energy cut proposed earlier, there is no way to probe for the nonexistence of the tau 

neuuino signal in light water detectors (we shall discuss the situation at SNO later). This is 

graphically demonstrated in figure 14, where we display the integrated spectrum for 

“forward events” based on the best fit to the data for zero mass for a representative burst. 

As we can see, however, if we make an energy cut, we can eliminate only a fraction of the 

tau neutrino events, while eliminating the bulk of the ie events. We chose two different 

cuts, O<E<15 MeV, and O<E<12 MeV. 

We use the best fit parameters to generate an expected number of events in the forward 

direction (including the energy cuts), and compared it to the actual number. It turns out, 

because the best fit parameters have a statistical uncertainty on the order of l%, that the 

uncertainty in the predicted number is dominated by Poisson Statistics, and is hence 4. 

In table 3 we display the expected number and the actual number of forward events for 

several models,for m=O and m=l keV, and for the two energy cuts. 

The general results are clear. If the luminosity is large, i.e N2100, the deviation 

between the predicted and “actual” number of events is just barely significant at the 2a 

level. This would imply m>O(500) eV, but gives no more detailed information about the 

actual mass. This result suggests mom. generally that light water detectors may not be able 

to distinguish between 2 and 3 neutrino species, unless me supernova is of above average 

luminosity (or closer than 10 kpc). As a result, unless specific timing information on 

events delayed g&er than 50 set can be extracted---either by a reduced background event 

rate, or using spectral information to distinguish signal from background, a sensitivity to a 

tau neutrino mass in excess of =l keV is not assured using light water detectors. 

(d) The Early time Signal: While not directly related to the analysis described above, 

our work sheds light on an issue which has received some attention in the past. It has been 

suggested that because the dispersion due to neutrinos of ZO(eV) is O(sec), that the early 

time signal--namely that of the supernova “turn-on”--either the early neutronization burst 

last O(10 msc) or the 0(.05) set turn on for the thermal burst--might allow the strongest 

sensitivities to small neuuino masses[l8,19]. We show here that such early time structure 
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is not likely to be probed using light water detectors. We display in fig. 13 the early time 

forward cone events for a represented, average luminosity model. We see that in spite of 

the potential sensitivity of the neuuonization burst to small electron neunino masses, we 

fmd that there is no signalfor the neutronimtion burst. This somewhat surprising result, is 

upon reflection, clear. The total number of expected events from the neutronization burst, 

even for a detector of the size of Super-Kamiokande, is O(l)!. Thus there is no way this 

signal could ever stand out, even against the thermal turn-on signal. More generally, the 

neutronization burst has a luminosity of O(5 x163 ergs&c), only slightly greater than that 

in the thermal burst. However, since the ve-e cmss section is at least 10 times smaller than 

the ve-p cross section, even if there were more than 1 event for the neutronization burst, it 

would be difficult to extract this from the thermal turn on in a light water detector. 

Regarding the second issue, we also see from figure 15 that there is no discernible 

effect of a tau neutrino mass on the early time signal. This is because the vr signal is 

hopelessly small compared to the v, +?e signal, even with angular and energy cuts. Thus 

again, since there are O(1) events in each 10 msec interval in the early stages of the 

explosion, any effect of a vr mass is well below “background” in the early signal. As our 

analysis demonstrates, the place to look for a vr mass in a light water detector is not at early 

times, but at late times, where delayed events may stand out by their presence or absence. 

Conclusions and Extensions: 

Our comprehensive Monte Carlo has allowed us to elucidate many new features of the 

neunino signal for a galactic supernova in a water detector. In particular we have shown 

that using the kinematic features of the neutrino interactions allows general a sensitivity to a 

vr mass in the range of at-least -50-300 eV, and depending upon the luminosity (distance) 

of the supernova, masses down to -20-25 eV may be probed. The statistical analysis 

presented thus far is in some sense preliminary. It was designed to probe what general 

range of masses the detection of a supernova burst might be sensitive to. As we have 

discussed, more sophisticated tests, including incorporating a neuaino mass in the 

maximum likelihood fits, utilizing energy cuts in the late time analysis along with exploring 

earlier parts of the signal in this analysis, are now being performed, and indications am that 
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they should extend the mass range for which a neunino mass might be detected. 

We have also examined what kind of improvements in the Kamiokande detections 

strategy might further increase the range of sensitivity. Without question, if the angular 

resolution could be improved, the results would improve as well. Unfortunately, the 

angular resolution is largely determined by multiple scattering of electrons, and is thus not 

likely to be accessible to improved detection technology. Energy resolution is already 

quite good, and it is unlikely that improvements in this, even if possible. would have much 

effect. A lower threshold would both increase the number of events for low luminosity 

bursts, and allow larger delays for a fixed mass. The former effect could improve the 

statistics for the ‘missing event” analysis, and the latter might improve both the maximum 

likelihood and the late time sensitivity to smaller masses. To check the former, we 

performed the analysis in (c) again, using improved energy resolution (by 20%). and a 

smaller trigger energy (3.5 MeV). Unfortunately the results did not change significantly in 

this case. We are currently exploring the latter effect. Perhaps the most direct 

improvement would be to further increase its size, but this may also be prohibitive. 

What about other detectors then? The most exciting new development in this regard 

involves the construction of the Sudbury Neutrino Observatory (SNO) heavy water 

Cerenkov detector 1201. While this is much smaller than Kamiokande, it is possible that 

neutral current fission of deuterium may be observable. In this case, non-electron (anti) 

neutrinos would have cross sections which are approximately as large as the ve-p cross 

section. Thus, they would contribute a much large fraction of the signal, and it has been 

argued that this might improve sensitivity to the tau neutaino. We are currently 

incorporating the features of the SNO detector in our Monte Carlo to examine this issue in 

detail. 

We do however have some preliminary thoughts in this regard. As far as the analysis 

we have thus far performed, its strength lies largely in the existence of the signal from the 

-10,000 ve-p events in the large detector. In SNO, one would expect a total of perhaps 

5GO-1000 events from a galactic supernova. Thus, by itself, it is not clear that the SNO 

detector could take advantage of the strategy we propose here to provide limits on the vr 

mass. However, in co-ordination with the titting analysis which could be performed at a 
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Super-Kamiokande detector, the possible neutral current signal at SNO appears at fmt 

glance to provide a very useful potential extra handle. 

Nevertheless, even in this case, it is not clear, without a detailed analysis of the type we 

have performed here for light water detectors, whether the SNO signal could improve the 

systematics and statistics. While the neutral current events are clearly distinguishable from 

charge current events when taken one at a time, the average time for neutron capture in the 

detector is estimated to be ~5-10 msec. Thus, if events are being recorded at a rate 

exceeding =lOO/sec, it is not clear that the neutron capture signal can be unambiguously 

associated with a specific electron or positron signal. Moreover, the neutral current 

dissociation signal carries little or no energy information. It may be that these problems 

are not severe. It is, after all, the late time events which are most significant for our 

analysis, and here the event rate is small enough so that neutral current events can probably 

be distinguished---even if the maximum likelihood analysis will be hampered by the loss of 

energy information. In any case, we are currently investigating these issues in mom detail. 

To conclude then, our analysis has shown that, contrary to naive expectation perhaps, 

with some luck, the next galactic supernova may provide a signal in large underground 

water Cerenkov detectors which could allow detection of a cosmologically significant vr 

mass. Mom importantly, perhaps, it has demonstrated that in this issue, it is the details 

which count! Without a detailed analysis of the actual signatures, important features of the 

signal can go unnoticed, or at least cannot be exploited 
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Figure Captions: 

Figure 1: An example of the temperature and luminwity functions for the various species, 

for one model supernova explosion (model 17) 

Figure 2: Angular uncertainty parametrized by m (a oa) for the Kamiokande II 

detector [16], and our tit. 

Figure 3: Background rate for Kamiokande II detector [4] scaled by 1.25, and our fit. 

Figure 4: Samples of the detected signal for several supernova bursts, showing the time 

shucture and energy spectrum. 

Figure 5: The time delay, as a function of neutrino mass and neuuino energy, for a burst at 

10 kpc. 

Figure 6: Histograms for all detected events for one model, for m,,=O and 400 eV. 

Figure 7: Histograms for events in the forward cone, for the same model, as the neunino 

mass is increased from 0 to 400 eV 

Figure 8: The best fit predictions superimposed on the “actual” neutrino signal for one 

model. (a) for zero mass, and rearward data, (b) zero mass and forward data, (c) same as 

a, for m=lOO eV, (d) same as b, for m=lOO eV. 

Figure 9: Heuristic examples of two different possibilities for overlap of confidence 

intervals for forward and rearward fits. a) shows most general possibility, b) shows 

SiNation for fits characteristic of this analysis. 
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Figure 10: Results, for 3 model bursts, of likelihood analysis, for difference in likelihood 

functions for best fits to forward and rearward signals, as a function of tau neunino mass. 

Also displayed is upper limit expected for this difference at the 99% confidence level. 

Figure 11: same as figure 8, for two bursts, but reducing the rearward cone to cost3 ~0.80 

Figure 12: Number of late time events for several bursts, showing predicted number based 

on best fit analysis program plus background, and Poisson probabilities, as a function of 

neutrino mass. 

Figure 13: Poisson probabilities for late time events for two bursts, where the energy cuts 

E<12, or E<15 MeV have been used, and lower time cutoff has been varied to find the 

value most sensitive to small tau neunino mass in this case. 

Figure 14: The predicted integrated energy spectrum for events in the forward cone, based 

on the bestfit model to the events generated in a sample burst. 

Figure 15: The early time forward cone events for an average luminosity burst 



Table 1: Parameters for 36 models 
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Table 1: 36 models of supernova neunino luminosity and temperature. See text for a 

description of the temperature and luminosity functions. Note that Etc,t is the 

total energy in all species 



Table 2: Parameters for v-e scattering 

v&e+ve+e 

G&.-i&e 

vp+e+vp+e 
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(gV’ - PA’)* kV’ + gA?* .!TA’* - .W’* 

kv + gAP kv - SAP gA* - gV* 

(gv - g‘4F kv+gAP gA* - gV* 

Table 2: Parameters for differential and total v-e scattering cross sections. gv = 

2sin*f3+4 - -5; gA = -,5; g$ = gv + 1; gA’ = gA + 1, and 8~ is the weak mixing 

angle. 



Table 3: Expected and Actual Numbers in Forward Cone 

Table 3: lntegrated number in forward cone. For each pair of two lines, top line has en- 

ergy cut O&cl5 MeV; bottom line has energy cut O<E<12 MeV. First col- 

umn is model number. Second column is expected number, the result of inte- 

grating forward cone using parameters fit with backward data. Third column 

is actual data with n-~ = 0. Fourth column is actual data with m, = 1 KeV. 
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